

Atir Software Development LTD

STRAP - Composite beam

Verification

All rights, including those of translation, are reserved.

No portion of this document may be reproduced, including photocopying without a written permission from Atir Engineering software LTD.

© Atir Engineering software LTD 13 Khilat saloniki, Tel Aviv, Israel

Tel: +972-3-6480129
Website: http://www.atir.com
Email: atir@atirsoft.com

Table of contents

1.	Description	3
2.	Geometry	3
	Loads	
4.	Reference	3
5	Comparison of Results	3

1. Description

A simply supported composite beam - steel section and concrete slab - loaded with a uniformly distributed load.

All beams and elements in this space model are defined on the X1-X2 global plane. Beam offsets are used to place the steel section below the slab, thereby generating the increased moment-of-inertia of the composite section. Note that the structure must be defined as a space model in order to specify X3 offsets.

2. Geometry

Modulus of Elasticity: Concrete: 300,000 t/m2 Steel: 2,100,000 t/m2

3. Loads

Beam load: FX3 = -1.0 t/m on all beams (total load = 10 t)

4. Reference

Warren C. Young, *Roark's Formulas for Stress and Strain, Sixth Edition. (Table 3 - Case 2c), 1989 6th edition,* McGraw – Hill book company.

5. Comparison of Results

	Location Result type	Result			Deviation
Location		Theoretical	STRAP	STRAP	
				(no offset)	
Node 32	Deflection	0.054 m	0.0548	(0.153)	1.5%
Element 10	Neutral axis	79.3 mm	79.0*	-	0.38%

^{*} The neutral axis location is calculated from the interpolation of +SX and -SX values.

Composite beam 3